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Abstract

We show that for every € > 0, there exists ng = ng(€) such that for every n > ng, two n-vertex graphs
G1 and Gy with e(G1)e(Gp) < (1 — en? pack, unless they belong to a well-defined family of exceptions.
This extends a well-known result by Sauer and Spencer.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

How many edges should an n-vertex graph have to contain every graph with at most n vertices
and at most m edges? Erd6s and Stone [7] proved that for every positive integer d and positive
¢ and sufficiently large n, every graph G of order n with at least (n>/2)(1 — 1/d) + cn? edges
contains a complete (d + 1)-partite graph with ¢ vertices in each part, where ¢ tends to infinity
with n. It follows that this G contains every d-colorable graph on ¢ vertices, and, in particular, that
G contains every graph with less than (d'gl) edges. Later Bollobés, Erdés, and Simonovits [2]
showed that t > alogn/(d log(1/c)) for some positive constant a and conjectured that this can
be improved as follows: ¢ > blogn/log(1/c). Chvatal and Szemerédi [6] verified this conjecture
by proving the following theorem.
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Theorem 1. (See Chvdtal and Szemerédi [6].) For each positive integer d and each ¢ > 0,
there is an ng = no(d,c) such that for each n > ngy, every graph of order n with at
least (n?/2)(1 — 1/d) + cn? edges contains a complete (d + 1)-partite graph with at least
(logn)/(5001og(1/c)) vertices in each part.

Bollobés and Eldridge [1] considered also Turdn-type conditions guaranteeing that an n-vertex
graph contains every subgraph with an edges for « < 1/2. They proved a bound in this direction
in the language of packing and posed a conjecture which was proved by Brandt [5]. Recall that
two graphs pack if one of the graphs is contained in the complement of the other. The next
theorem is a somewhat simplified version of Brandt’s result.

Theorem 2. (See Brandt [5].) For every 0 < o < 1/2, there exists ng = no(e) such that if n > ny,
e(Gy1) <an, and e(Gy) < ﬁnyz, then G1 and G, pack.

Bollobds, Kostochka, and Nakprasit [3] extended Theorem 2 to the case o > % A simplified
version of it is as follows.

Theorem 3. (See Bollobds, Kostochka and Nakprasit [3].) Let 1/2 < a < 1. Let G| and G»
be graphs of order n > ( 4016 such that e(G1) < an, e(Gy) < %n3/2, and A(Gy) <n—1—

1—«

N
Tral—a)’ Then G| and G, pack.

Sauer and Spencer [8] proved the following bound in terms of the product of the sizes of
graphs.

Theorem 4. (See Sauer and Spencer [8].) Two n-vertex graphs G and G» pack, if

e(G)e(Ga) < (Z)

The following examples of graphs that do not pack show that the condition e(G1)e(G2) < (;)
cannot be weakened without introducing other restrictions.

Example 1. G| =K, and G, = K, UK, 5.
Example 2. G| = K| ,—1 and G has no isolated vertices.

Note that in Example 2, if n is even and G» is a perfect matching, then e(G1)e(G7) = (g)
Also note that e(G) 4+ e(G>) can be around 3n/2. Bollobés and Eldridge [1] proved that this
may happen only if one of the graphs has an all-adjacent vertex or n is small. In a bit simplified

form, their result is as follows.

Theorem 5. (See Bollobds and Eldridge [1].) Let G| and G, be graphs of order n > 10 such
that A(G1), A(G2) <n—2ande(G1) +e(Ga) < 2n — 3. Then Gy and G, pack.

This bound is also sharp as the following examples show.

Example 3. G| = G2 = K3 U K| 4.
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Example 4. G| = K ,—» U K| and G is 2-regular.
Example 5. G| = K| ,—3 U K3, n is divisible by 3, and G, = K3 U --- U K3.

Teo and Yap [9] showed that for n > 13, Examples 3-5 are the only pairs (G1, G3) of n-vertex
graphs with e(G1) + e(G2) = 2n — 2 that do not pack.

In this paper we strengthen Theorem 4 by describing (for large n) the pairs (G, G2) of
n-vertex graphs with e(G1)e(G) < (1 — e)n2 that do not pack.

Theorem 6. For every € > 0, there exists N, such that for all n > N, if two n-vertex graphs G
and G, with

e(G1)e(Ga) < (1 — e)n? (1)

do not pack, then one of the following holds:

(i) one of the graphs is K, and the other has exactly one edge; or
(i1) one of the graphs has maximum degree n — 1 and the other has minimum degree at least
one; or
(iii) one of the graphs is a triangle, and the other has independence number two.

Observe that there are exponentially many pairs (G, G2) of n-vertex graphs satisfying (ii)
or (iii) with e(G)e(G2) < 0.9n2. Although n-vertex graphs with independence number two and
fewer than (1 — €)n?/3 edges may have a complicated structure, we can in polynomial time
check any graph whether it possesses this property. We believe that it will be sufficiently harder
to describe the pairs (G, G2) of n-vertex graphs with e(G1)e(G3) < (1 + €)n? that do not pack
even for small positive €. Note that Examples 3-5 fall into this category. Yet another example is
as follows.

Example 6. G| = K4, n is divisible by 3, and G2 = K;,;3 U K;, 3 U K 3.
In the proof of Theorem 6 we will make use of the following fact.

Theorem 7. (See Bollobds, Kostochka and Nakprasit [4].) Let d > 2. Let G| be a d-degenerate
graph of order n and maximum degree Ay and G, a graph of order n and maximum degree at
most Ay. If 40A1In Ay < n and 40d Ay < n, then G and G4 pack.

Recall that a graph is d-degenerate if every subgraph of it contains a vertex of degree at
most d.

2. Proof of Theorem 6

Fix an 0 < € < 0.1. Let n be large. Suppose that Theorem 6 does not hold for € and #, i.e.
that there are n-vertex graphs G; and G satisfying (1) that do not pack and do not belong to
the families described by (i)—(iii). We may assume that ¢(G) < e(G»). So, by (1), e(G1) <
V1 —en<(1—€/2)n. Letaa =e(G1)/n. By above,

O<a<l—¢€/2. 2)
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Let A;, i = 1,2, denote the maximum degree of G;. By Theorems 2 and 3, if e(G7) < %n% and

Ay <n—1-— ﬁ , then G1 and G, pack. So we consider the following two cases: (1) Ay >

n— L% and e(G2) < 4n?, and (2) €(G2) > tn3.

Casel. Ay >n— L and e(Gp) < n2 Let w € V(G») be a vertex of maximum degree A,
in G».

If e(G1) < (1 —€/2)n/2, then since n is large and e(G7) < %n%, G1 and G» pack by Theo-
rem 2. So we assume that e(G1) > (1 — €/2)n/2. Note that then by (1), e(G2) < (2 — €)n.

If G has an isolated vertex, say w’, then let G| = G| — w’, and G, = G, — w. We have
e(G)) =e(G1) and

e(Gy) =e(Ga) — A(Gy) < (I —e)n+£ <(1—¢/2)n 3)

forn > ( ))2 By (2) and (3), for such n and i € {1, 2}, we have

e(l—a

A(G)<e(G)) <(1—€/2n<(n—1) —

L

By Theorem 5, G| and G/, pack. Thus G| and G pack as well (by placing w’ at w).
Assume now that G has no isolated vertices. Since (ii) does not hold, G, has no vertex of
degree n — 1. Since every connected graph H containing a cycle has |E(H)| > |V(H)| and

e(G) <(1—e€ /2)n G has at least L tree components. So there is a tree component T of G

2

with at most = vertices. We w111 first place on the vertices of G the vertices of T, and

en 2 -
then find a placement of the remaining vertices.
Let t = |V(T)| and let the vertices of T be ordered uy, us,...,u; in such a way that u;
is a leaf and for every i = 2,...,¢, vertex u; has exactly one neighbor in {uy,us,...,u;j—1}.

Place u; at w. Since dg,(w) <n — 1, we may place u, at a non-neighbor wy of w in G». Let
G| =G —u and G, = G2 — w. Suppose now that 2 <i <t — 1 and we have already placed
u»,...,u; onvertices wyp, ..., w; of G/2. By the ordering of V(T'), u;+1 has exactly one neighbor
uj € f{uy,uz,...,u;}. Observe that

e(G) <e(Ga) — Ay < (1 —€/2)n. @

Therefore, w; has at least (1 — €/2)n — 2 non-neighbors in G’z. Atmosti <t —1<=2—1of
these vertices are already occupied by u», ..., u;. Thus for large n, there is a non- nelghbor Wit
of w; not yet occupied. Place there u; 1. This way, we place all vertices in V(T') on vertices
of G, without conflicts.
Let G/ =G| — V(T) and G = G2 — {wy, wa, ..., w;}. If we find a packing of G with G7,
then we obtain a packing of G| with G, a contradiction. By (4), for large n,
(G”) + e(G’z/) ((l —€/2Qn—(t — 1)) +(1—€/2)n<2(n—1t)—3.

By (2) and (4), for i = 1,2, A(G)) < e(G)) < (1 —€/2)n < n(G!) — 2, and hence neither G/
nor G has an all-adjacent vertex. Thus by Theorem 5, G and G} pack.

Case 2. ¢(G2) > +n?. Then

e(G) < —€)ﬂ2/<%n%> =3(1 —e)/n. (5)

Since e(G1) < 3+/n, G| has at least n — 6,/n > n/2 isolated vertices. Let vy, vo,..., v,
be an ordering of V(G;) such that v; has maximum degree in Gz[v;,...,v,]. Let G, =
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G2[V(n/2)41, - - -, vx] and A} be the maximum degree of G. Then 0 < e(G)) — A} < e(G2) —
Al (n 4 1)/2, and thus A} < 2e(G2)/n. Let G| be the graph obtained after removing |n/2]
isolated vertices from G1. Let n’ = [n/2].

If Gy is a forest, then let d = 2. Otherwise, let d be the maximum positive integer such that
G is d-degenerate. Since e(G1) > d(d + 1)/2,

d < |2e(Gy)]. (6)

By (5), 40A;In A} < 40e(G1)Inn < n’. Since G| and G/, do not pack, Theorem 7 yields
40d Ay >n'. So

2¢(G») (1—en?  80v2(1 —é€)n
< L <404/ < 804/ =
n/2 <40d Ay < 404/2e(Gy) . < 80+/2e(G1) e (G1) Nl

That is, e(G1) < (160v/2(1 — €))% < 10°. Let co = e(G1). If co = 1 and G and G» do not pack,
then G, = K, and hence (i) holds.

If co =2 and G and G; do not pack, then the complement G, of G is contained either in
a matching (if G is a 2-path), or in K1 ,—1 or in K3 (if G has two isolated edges). In all cases,
G has at least (g) — n edges. Therefore, e(G1)e(G2) > n? — 3n, a contradiction to (1).

The case G| = K3 and G| and G, do not pack is the other way to express (iii).

So, we have 3 < ¢ < 10° and G1 # K3. Hence the size of the complement G’2 of G’2 is at

least
2 2 2
n n n 2 € n_n 2 €
—(l—-e)—=—(1—— —nt-=—>—(1-= —n®.
(2> ( 6)C() 2 ( C()>+C()n 2 2 ( C()>+2C0n
By Theorem 1, G_’2 contains complete (10.5¢o] + 1)-partite graph with ¢ > en 105

. . . 5001og(co/€)
vertices in each part. Thus, if

X(G'l) <1+ 10.5¢0], (N

then G, contains G, i.e., G| and G, pack and hence G| and G, pack. This is certainly the
case if co = 3 and G # K3. If ¢p € {4, 5}, then x(G}) <3 and 1 + [0.5¢o] = 3. Similarly, if
co € {6, 7}, then x(G) <4and 1 + [0.5¢co] =4.

Let co > 8 and k = x(G'). Since G is d-degenerate, (6) yields k < 1+d <1+ [v/2co]. But
for each real ¢y > 8, we have +/2co < 0.5¢o and so (7) holds. This proves the theorem.
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